
-Tcnia RepoDnrtr 7014

0~~n Algorithm
fo',-.""r Parsing

Flow Graphs

Daniel Carl Brotsky

I~. G T . "MIT. Artificcal Intllienc Labraor

--... gorthn" .A

loww Gr 7 4aphs.-

1 I b ORO

p '

06• 26.-7

Best
Available

Copy

UNCLASSI FI ED

SECURITY CLASSIFICATION OF THIS PAGE ("on Dat. Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
I.REPORT NUMB-ER GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

Al-TR-704 t¼- 2A C
4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED

memorandum
An Algorithm for Parsing Flow Graphs

6. PERFORMING ORG. REPORT NUMBER

7. AuTMOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Daniel Carl Brotsky N00014-80-C-0505

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS
545 Technology Square
Cambridge, Massachusetts 02139

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency March 1984
1400 WilIson Blvd 13. NUMBER OF PAGES

Arlington, Virginia 22209 152
14. MONITORING AGENCY NAME & ADDRESS(It different from Controlling Oftice) IS. SECURITY CLASS. (of this report)

Office of Naval Research UNCLASSIFIED
I n f o r m a t i o n S y s t e m s 1 5 s . _ _ _ _ _ _ _ _F l C A T O N / D O W N _ _ _ _ _ _

Arlington, Virginia 22217 ISC. SIEDLICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of thic .Yeport)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abelract entered In Block 20, It dlfferent from Report) .

IS. SUPPLEMENTARY NOTES

None

It. KEY WORDS (Continue on reverse aide if neceseary and Identify by block number)

parsing Earley' s Algorithm
graph grammars program analysis
directed graphs Programmer's Apprentice
graph analysis

20. ABSTRACT (Continue on reveree aide If neceeesary d Identify by block number)

This report describes research about flow graphs--labeled, directed, acyclic
graphs which abstract representations used in a variety of Artificial Intel-
ligence applications. Flow graphs may be derived from flow grammars much as
strings may be derived from string grammars; this derivations process forms
a useful model for the stepwise refinement processes used in programming and
other engineering domains.

The central result of this report is a parsing algorithm for flow graphs.

DD , 1473 "OITIONOF Nove 651OBSOLETE UNCLASSIFIED
$IN 0'.02"0|4"6601 SECURITY CLASSIFICATION OF THIS PAGE ("hen Date Entered)

S .. .* - °* •

Block 20 continued:

Given a flow grammar and a flow graph, the algorithm determines whether the grammar
generates the graph and, if so, finds all possible derivations for it. The author
has implemented thealgorithm in LISP.

The intent of this report is to make flow-graph parsing available as an analytic
tool for researchers in Artificial Intelligence. The report explores the intuitions
behind the parsing algorithm, contains numerous, extensive examples of its behavior,
and provides some guidance for those who wish to customize the algorithm to their
own uses.

Thbis report des.cribles. re(.;.erchl done10 at tlw Art li fiel 1Int'lligo(nc LJaLboratory
of tlhe a:-;ssawchuiilt t is tiitc of lcclaiology. Sup)oirl for t he la.,ratbry',

artificial iutelligit'c, re..a~rch Ihas I), pr' o i ('vid,1 in ipart Iby Ol Advaic4'd

11tscarch P rqjjects Agentcy of the D)epat'Iment of DeFCiJlvC 1uhder f)lfice of
Naval Res(earch conlritct NOI)It1.I-80-((.5)5. in pmrt by National Science
]omndation grants MCS-7912179 and M(CS-81 17633. and in part by thew

IBM ACorporation.

The views anl COd'lUsi0ni f'OhlainId in this doctiment are th1ose of the au-
thor, and should not l) interpreted as rel)res'iit ilg the policies. either ex-
pressed or implied, of the Department of Defense, of the Nat ional Science

Foundation. nor of the IBM Corporation.

NTIS GRA&I

Uwainnauncr'd 0

I t.el ', til

S",•, t~y CodeSl
'ad/ol

K _ u

0. 1

An Algorithin for

Parsing Flow Graphs

Daniel Carl Brotsky

Artificial Ihtelligcce Laboratory '

Mas-sachuset tu lust itute of Tvchnology -

Tllis report is a rcvi~wd versioic of a thei lsj ubmuit~ted to thc Depart initi-t of
Eie IrclEughiuecring andi ('omuuiut 'r Science on1 lebriary 8. 1980". mi paritjal

fulfi~iutent of thle requirementis for thle degree (of Mlaster of Scienre.

Copyi-iglt 01I981 Danieul Carl Brofsky1
Copyright 01 %-1 Massacluictl t ist it i Ii of Teco-Iiology.....2

j .

Abstract

This report des'ribes research about flow graphs - labeled. directed, acyclic

graplis which abstract representations used in a variety of Artificial Intelli-
gIFce ap)plications. Flow graphs may he derived from flow grummars muchl
as strings may be derived from string grammars; this (derivation process

forms a useful model for the, stepwise r(fiietment process(es used in program-

ming and other engineering domains.

The central result of this report is a parsing algorithm for flow graphs.

Given a flow grammar and a flow graph, the algorithm determines whether

the grammar generates the graph and, if so. finds all possible derivations for

it. The author has implemented the algorithm in LISP.

The intent of this report is to make flow-graph parsing available as an

analytic tool for researchers in Artificial hitelligence. The report. explores

the intuitions behind the parsing algorithm, contains numerous, extensive

examples of its behavior, and provides some guidance for those who wish to

customize the algorithm to their own uses.

rI
-U.'4

'Ut •,
,,* U.

111

CONTENTS

Acknowledgements vii

1. Introduction 1
1.1. M otivation . 2
1.2. Background 3
1.3. Structure of this Report 3

2. Definitions 5
2.1. Flow Graphs 5
2.2. Flow Grammars 7
2.3. Flow Graimniar Derivations 10

3. Motivation for the Algorithm 13
3.1. No'n-Deternminis tic String Parsers 13

3.1.1. An Example 15
3.1.2. Discussion 19

3.2. Simulating the State-based Parser 20
3.2.1. Preliminaries "................ 20
3.2.2. Multiple-Call Collapsing 21
3.2.3. Left-recursion 26
3.2.4. Duplicate-Item Merging 27
3.2.5. The String Algorithm29 .
3.2.6. Why is this Earley's Algorithm 31
3.2.7. Using the Algorithm to produce Parse Trees 32

4. The Algorithm 35
4.1. Non-Deterministic Graph Parsers 35

4.1.1. Reading a Flow Graph 36
4.1.2. Flow Graph Recognizers 3
4.1.3. States 40
4.1.4. State Transition Functions 41
4.1.5. Linkage Mechanism 46
4.1.6. Flow Graph Parsers 48

4.2. The Parsing Algorithm 58

1.1

4.2.1. Preliminiries 58

4.2.2. Optimizatimis 1

4.2.3. Examples 6............................. .1 ,

4.2.4. Algorithm Description 130

5. Discussion 135
5.1. Flow Graphs and Grammars 135

5.3. Correctness 138

5.4. Complexity Analysis 138

References 143

06

I¢_-.I,
3%

4-.N

I.4

Acknowledgements

This report has beein a lunig, long tait. in the making, so I havw had time to

get help fromi many, 11a,1y peo)ple. Sonic lielped niii with my research, sone •g*
helped mc with my life, and some lhelped uni with both. I am grite'fltl to all

of them, and e'sp-cially to Charles Rich, who has .ztuick with me thiough a
few fast times and manry slow ones.

PO

-ii..4 viiii
.4~-

'.4_

%

Chapter 1.

Introduction

This report •uzxanzes research about flow graphs, a graph-based repre-
sentation abstracted from those used in a variety of Artificial Intelligence
applications A flow graph is a labeled, directed. acychc graph whose nodes
are annotated with ports-positions at which edg(, enter or leave the node.

Here is an example of a flow graph:

° 2w5'
3 22

-* We can generate complex flow graphs from simple ones by replacing single

nmodes with multi-node subgraphs. The obvious analogy betweein this process
and that of string derivation from a context-free granimar gives rise to the
notion of a flow grammar: a set of rewriting riles which sp(cify how to

replace given nodes with p c-sp(cifid subgraphs. Here is an (,xample of a
nile from a flow granmmar:

•% , " .1

A""

eI I.

............................. ",

1 IIJr,.hzlUtJiI

The central result of thi. report is a pariag algorithm for flow graphs.
G.iven a flow granlilar and a fliw graph. th• algorith n ,let ernu-e whether
the grammar generates tie graph and. if so. fihls all po,-sibl, dcrivations for
it. Ti, algo rithini rlns in tim' polynmomial mii thle no iii•iir of nodes in the

input graph. with ant exponent and consta, of proportionality determined
by thie input granirnar. The aut hor has iplnhieminted thle algorithin in LISP.

1.1. Motivation
The work described here grew out of the athor's re:''aruh into automated

program analysis [Brotsky 1981>. done as part of the Programmer's Appren-
tice project at the Artificial hltellige.nce Laboratory of the Massachusetts
Institute of Technoiogy [Rich and Waters 1981'. In the work of that group,
programs are represented as annotated graphs. called plans. whose nodes
stand for operations and whose arcs indicate control and data flow between
the nodes. (Plans are additionally annotated with a great deal of other

information about the program thcy :epresent. but the details of these an-
notation.- do not concern us here. lnterested readers should consult [Rich
1980)

The authors idea was that the strpw.se-refinernent process. wherein high-
level program operations are imnplemented as groups of lower-level opera-
tiols,. could naturally be modeled as a plari-rewritimg proces.i. Thus, flow
graplis were developed as abl, eactions of plan st ructure. flow grammiors were
dev.w!opid to enco(le allowable derivation steps. flow-grap'h derivations were
developd as models of plan derivations, and structural prograim analysis
could be effTected through parsing.

This program-analysis work is continuing. but does not concern us here.
Flow graj;hl,. while developed as ad hoc abstractions of plans. ar, general1
enoughl to zerve as abstractions of the graphical representations of other

) ,'

, . -- . .-

• .: - , , .". - .. ",". : - - -, .- ' ,.,' - , . . . ,,-, ," • -'v -• - , -' ',", -'. ." •. *. " .•

. DBackgr.ijid

domain:i Thv intitu of thi:., rcport is to |k i graphk pt;rsink, avrtilald,
;Is ;Ul iIVIIytic to,, lit-r Al r(.-crchcr- ii t].,u,. ,,111 r (h}m ains -- "

1.2. Background

ThIe struut iire of low graph.i and flow ,,griin::,.irs has baen in.fi...eed by .earl
work on web yr, 'mfnr., iPfdtz and 1hi,,cnfhti 1069. %Iontran-ari 1971i Pavlidis

1972ý. but IiOIW of this work w.i, concerned with par.inii. The" struictuore of

our parsing algorithlim aros-e, from careful sottv of Earlev'y algorit h in Earley

1969i adl Donald E. Knoth's sittinal work on LR(k) strili-g ,raliliars 11965"

1.3. Structure of this Report

Chapter 1 of this report is this introduction. Chapter 2 describes flow
graphs. flow grrmixnarý. arid flow-graph drivation- in detail. Chapter 3

presents a derivation of Earlvy's algorithm which differs considerably from..
those found in standard sources. Thi. derivations is given as, background
for the very similar derivation of the graphs parsing algorithin presented 0

in chapter 4. Finally. chapter 5 discusses flow graphs. grammars. and the

parsing algorithm. This discussion includes a brief complexity analysis of
the algorithm, and suggestions for related research.

Ii i

"_ † † † † † * ** * * .*l : . .- . . - -..

4 1 hlzrrltct'ti 0t

U70

Io
p "-

ni

"14 fA PA-

o" .

a,0,

" " ' ' " " ' " '" " - .. ' ' " - ' .. ' -. " . - . i " ' i : . . i ' l

. -~ ,

Chapter 2.

Definitions

In this chapter we define flow graphs and flow grammars, and give the "
mechaiiisin by which a granmmar derives a graph.

2.1. Flow Graphs

A flow graph is a labeled, acyclic, directed graph whose nodes and edges are ..
restricted in a variety of ways:

@ The label of each node is called its type.

* Each node has a set of input port3 and a set of output ports. These two 7 0..M
sets are disjoint. All nodes with the same type have the same input and
output port sets.

The input and output port sets of flow graph nodes are never empty.

That is, all nodes have at least one input and one output port.

9 Edges in flow graphs do not -in merely from one node to another, but
from a particular output po. one node to a particular input port of
another. No two edges may entcr or exit from the same port, so a node >""''
can be adjoined by only as many edges as it has ports.

VI
Intuitively, a flow graph looks like this: .

-.. j°j

-v 2 ,

:• "".:'.'.

2 Dc'fiuition.s

3

Notice that ports (which are identified by numeric annotations on the nodes)
need not have edges adjoining them. Any input (or output) port in a flow
graph that does not have an edge running into (or out of) it is called an
input (or output) of that graph.

Notation

We will always direct our flow-graph diagrams from left to right. We will
often subscript node types so as to make them into unique labels. (This
avoids awkward constructions tuch as 'the third a from the bottom-left.")
When we do not care which nor an edge adjoins, or if this is mad, clear
from context. we will omit port rinnotation5. If we onmit all the ports an-
notations on a node, we will often omnit the circle drawn around the node's
label. Finally, wt. will always emnphasize the inputs and out puts of graphs
by adjoining them with edge stubs, called the heading anti trailing edges of
the graph.

Here is the graph we saw above written using the conventions just de-
scribed:

I

oil

V,

•. q

.- 4

2.2 Flow Grmarninji 7

I -..

We will use this form whenever possible.

Terminology

The linkage information for a node in a graph is a set of (port. edge) pairs

deta~iling which edge adjoins each port on that node. For example, figure 2.1
shows a graph whose edges have been labelvd for easy reference. The linkageI
information for nodes a, and Z2 in this graph is:

(2, e3) (2, e7)
(3, C4) (3, es)

In keeping with our left-to-right conventions, that portion of a nod's linkage
- information which involves only input (resp. output) edges is called its left.

linkage (rtsp. right-linkage) information.

2.2. Flow Grammars

TFlow gramars arte a generalization of iontext-frea string grammars. Essen- .'-

tiahly. a flow grahnwiar its a set of rewriting rules. wherv each ride explinas.• 3 . 2 . y .,.
. .. .

8 2 Definitions

e,

Figure 2.1. A flow graph. The edges of this graph have been labeled for eas•y
-' reference.

how to rcpl~e a node in a graph with a particular sub-graph. Just as a
string grara.,dr gradlually rewrites a single-element string as a longer and
longer string, a flow grammar gradually rewrites a singlf.-node graph as a
larger and larger graph.

More precisely, a flow grammar C consists of 4 parts: a set P of produc-
tions, two disjoint sets of types N--the non-terminals--and T--the termi-
nals. and a distinguished non-terminal type S--the start type of G. Each
production in P consists of three parts: two flow graphs and a list of port
correspondences. The first of the two flow graphs--the production's left-
hand side--consists of a single node whose type must be from N. The
second of the flow graphs--tle right-hand side--consists of nodes whose
types are from N U T. The left and right-hand sides must have the same
number of inputs mad outputs, and the list of port correspondences is a 1-1
correspondence between inputs and outputs of the two sides.

A flow grammar is shown in figure 2.2 Each rule maps a single node to
•. a graph. The left-hand side node of each rule must be a non-terminal, that
:':':':is. of a non-terminal type, while the right-hand side graph can mix types at
:.:::.:will. (We will indicate non-terminal types with capital letters, and terminal

.-. ,,. types with lower case letters.)
:. The inputs of the' left-hand side of a rule correspond one-to-one with the4

Sinputs of the right-hand side. as do the outputs. Where clarify is needed, S
.. ,-:,'.'we will indicated this relationship by drawing lines between the elge stubs
"-:.,.'adjoining corresponding ports, as was done above. Where it's (lear. however,

:'S

-- 3

-a,

- ~ . ..

. ,.f . , -d • b - . . - .. , . ,.4 -.-.. , -.-- , - . . . ,-. .. %--,-:. • - - ,. . -. .

-- .'--- -

2.2 Flow (Ir.7I.V.1;u 9

49 2

3I

'S A

1 2,.

.ý' C. .C e .LIA

10 2 Deintin 0J

wc will irulicjit Ihc corrcsl()nudvniic simiply by miirroring th 1w digni ixwit ofJ
h-fl-himid suit, cilgw sti~ll)- with tluosc of the righit-hanid side. For exalipiijt'
the Sucoxi d nile ill t he abovle .grani iar could have b-cii writicieli s follows:

Notce hatthere is no flow-gramnuar equivalent of an "(-rule- in a string
grawmax: that. is. there .r nflwra arreshoe right-hiand Iids

are empty. This4 is because it 'Is iumanirugless to replace a node in a graph
with nothing: the edges that were adjoined to that node must go somewhere

2.3. Flow Grammar Derivations

fl Flow graphs are derived from flow grammars in the expected way. We
start with a graph consistinug of a single S-node and then rewrite it with an

applicable rule from the grammar. This gives us a flow graph. If there are
no non-terminals in the derived graph. the derivation stops. Otherwise, we
pick a non-termiinal and a rule that derives it, and replace the non-terminal
by the right-hand side of the rule. This gives us another graph. and the 6
whole process iterates.

Of course, when we replace a non-terminal by a right-hand side that
derives it. we have to do something with the edges that adjoined that non--.

terminal. This is what the port correspondences in rules are for: if p was
a port on the replaced zuoi-terminal. then the edge that adjoined p (if any)
is rnade to adjoin p's corresponding port in the replacemenct graph, The
restrictions on rule formation insure that there is never any quiestion as to

X]low a right-hanid side should replace a left-hand side. ror example, figure 2.3
shows the derivation of a graph from the grammnar given in the last section. -

.

77_

"4? "

2.3 Flow Grazumu"r Derivationsj 11 0-

*a
aj

a

-

J , -'I

b

a xz "z.z

*1 h"'4

Figure 2.3. Samplc Flow Graph Derivation

• .r-I

I."

•. " " ""p- .l *• - -

0

I
12 2 Dufiultunl% 61

p 1
S

2
I

v?1 a

S

.- . -. L.m. �- -. _ _ - � - _ .. '�..-�.--�-�-.-'--.-........

A.-

Chapter 3..

Motivation for the Algorithm

Earley's algorithm is a well-known string parsing algorithm [Earley 1969].
It takes a string grammar and a string as input, and determines all possible --
derivations of that string fromi that grammar. The output of the idgorithri
is a lilst of repre.,entations known as items: the acceptability and derivations - .

of the input string are encoded in this list.

This section presents a derivation of Earley's algorithm that differs sig-
nificantly from those found in standard sources. For a given input grammar "

and string, we first construct a non-deterministic stack-based parser for the '0
gr;unrnar. We then deterministically simulate the behavior of that parser
when run on the input string: the representations of the parser's config-
urations generated in this simulation will be homomorphic to the items .

produced by Earley's algorithm when run on the same input.

The derivation given here is presented as background for the very similar
derivation of our flow graph parsing algorithm given in the next chapter.
Much of the complexity inherent in both algorithms arises from optimiza-
tions that are employed in the simulation process: since the intuitions under-
lying these optinizations are the same in both the string and graph cases,

we believe that presenting them iii the relatively familiar context of string

parsing will make their use in graph parsing more comprehensible.

3.1. Non-Deterministic String Pars,

Given a context free grammar G with productions Pl .. P,, and start
symbol S, the followiug construction yields a non-det eruinistic stack-based ..

pars.r for G:

13

.........-

i ~14 3 Alt jwitioii fo.r the .Aig.(rithjzji 0

..1. (Construct a st at v-iiaelliii, reco~ gnizer for thew right- hand 1(1hh, of each P,., -

A stat , ill the recogliizer R, constructed for rulh P, will c,,iisist of a copy
of Pi's right-liald sih, with a dot placed jl.'-t to the left or right if ofne of
its syn ilbls: tilte st st iv t f R, will cotisist of all thilt status forii ed ill this -*'4
way. The ;•tate transition fmi't io of ?, will iiuap (state. syiihol) pairs

to sta tela state with a dot to the left of sutit symbol s will have a
transition on s to the state whose dot is just to the right of m. The initial
state of Z, will be the stare with a dot to the left of the leftmost symbol
in P,'s right-hand side: its final (accepting) state will be the state whose
dot is to the right of thei rightlmost symbol iii Pi's right-iand side. for
For example. if P, is the production A - xr.V. then the recognizer for
P, will have the following five states:

.(A -. .BAyj
[Ax-. zBAy]
[A-- z BAyl-
[A- xBA.y]
[A - xBAy.]

and the transition diagram for Pi's recognizer would look as follows:

A--'x-AY A-.x.BAy A -" B-A A-.PxB.y A--xBAy.:::. ::1

2. Create a state-based machine P whose state space and transition function
is the union of all those of the recognizers for the P,. The initial and final
states of P are the initial and final states of the recognizer for S.

3. Convert P to a non-deterministic stack machine by adding a stack and

instructions as follows: For each state s which has a transition on a non-
terminal input, associated instnmctions to that state which (i) push the
state onto tile stack ,•ld (ii) put P iinto the start state of the recognizer for 4

sonic production which derives that non-terminal. (If the non-terminal

on which a state has a transition has n possible derivations. then this
step will associate n instructions with that state.)

4. Complete P by adding instructions as follows. To each accepting state of
a recognizer for a Pf. all(] am instruction which (i) pops a Ftate ,ff the top
of the stack and (ii) put P into the state which is led to by the popped

state s transition on the non-terminal derived by P,.

'IL

]

.

.

4
3.1 No,j-Der tr:uii.st ic S•t ring Parsvr.•1•.-

:Z-

The aUchiiiW P h1,ilt in this way is it ttip-d.wui jnj-dl•hterininitic parser
for -eiavti'wvs derived from (G. It operatis by r(iLittilg syitil eids one at atim,, from thi inptt awld initking apPropriate stale trimi.ct b.- as it 41m,(so.5.

Whinever it eniters it si tt(WhiCh hat a.)dwiatvtl ,tack insruiwrtons. it ch..sis,

one of those (istrriwtins and ilxect'tes it. (The choice inwvlved],(er is what

niakes the par,.er non-diterminiit ii.) We first consider an exaniple of such

a parser. and then discuss some imipliications of the construction techniquv.

3.1.1. An Example N,.

Consider the following grammar G:
. 4

• .-"A,
i',•S "- A a

A- c
A-.cA

C derives all strings consisting of one or more c's followed by an a. We will
p carry out the construction described above so as to produce a parser for G,

and then run this partser on tile input eca.

First. we construct state machines which recognize each of the produc-
tions in G. These are as follows:

'Actually, this machine. as mrnerly ani acceptor for such sentences. However. if we have
"each push instr-ction w P output the non-tvnj¢nal which gave ris- to the push. and we
output Pach itiptt qviibul a.9 it iq recid. theu each accepting path through P will ottput
t. leftost derivntirin for thm sentence accepted. Tbus, we view P aby a pa .ewr.

• -4

r1 "%
, 4. o .

...-
".....................I-

16 3 Motivati, n fr trj, Al,-,orithmi0-

A a

S -. Aa:S- A

~C
A-.- C:

A

A-• A- -A

Now we create the tunion miachinie and replace non-terminal transitions with
pus "es:

9--pc S-2 - ýAt - -
. . o

.. " .

.1N w- Dvtvrinjijistjiu Strhiig PAvry~r 17 S

"S" " S"-.

A-.-C: A- c A-c.

C A

AscA: A-.-.CA A-c.A

-4
FinalY. we' complete the, construction by adding stack pops oil rductimis.4

S- --Aa S 'A.,

C A--c A-c.P

C WA

A---cA: A-cA A-c-A pop

'7-h

:1.

i..- *'

U 3 M.Itivatinm fLir thc A lg)rithnl

This comp1li'tv's our pjr.•'r. W\'. will re'prscutit d giv(,n cumlii~trati o of tile

parwr a;:

(input positiuu` Htslt,'): t(ý¿twk top); ;sta,'k b),ttoin))j

where the stalte(s att. r,('sl(,(x,te(d usintg the (lot r(,pr(,s('rtati s hown above.

(Retail that stack entries are just states.) For exanmple. when running this
parser on thie strig era. it ,ztarts in the following configitration:

0(() IS Aa.()

The state [S -.. Aal has two transitions on puosh instructions. The parser
must choose one of the tw4;, leading it into one of these two configurations:

0(t) [A - .c. (S A-..a)]
[A -. cA,(-(S Aa)I

At this point, uo more state transitions are possibie without reading an
input symbol. Thus. the parser will read the first c, leading it into one of
thcse configurations:

1 (c) [A -'- .. (S --- .A)),

[A- c .A, (S -. Aa)]

The first of these two configurations is ax accepting state for the rule A -c,

and allows a pop into the following configuration:

1(c) [S-,A.a,OI

while the second configuration is in a state containing push transitions to
the these configurations:

,..'.1(c) IA -- .c, (A ", c.- A- S , Aa))

[A -- ca, (A-- c -a;S -. Aa)]

Once again, no more state transitions -a're possible without reading another
input symlbol.

We can summarize all the possible computations so far in the following
tabular fashion:

r.:•.4 0(c) IS - A- a.. ()
[A -. c. (S -,.Aa)]

..-.. [A .- cA. (S - .a•)!

I:•:
.- J ..

'-2,.
.

- Rzt ". L &A .. i~

'I.'

3.1 Noi -Detriini.tii c String Parsers 19

I (r) [A c-.., (S -. A,,)]"""
IS -. A .()]
[A c- A. (S Aa)]
[A c, (A - c. A: S -- Aa)] ...- ;

'[A-- cA.(A-c.A:S --. A)

We will use this form extensively to suimnarize actions of these parsers; for
example. the remainder of the run of this parser on the string cca goes as

follows:

2(cc) [A -* '.,(A- c.AS --. Aa)J
[A "- cA ", (. Aa)"

IS -. A -a, ()j
[A -. c' A, (A c. A: S Aa)]
[A -. c,(A -- cA;A -- c.A;S - Aa)]
A - - .cA. (A c-.-. .,A c--. cA; S .,.Aa)] ..

3(cca) [S-- Aa.,)

3.1.2. Discussion

From one point of view, this construction technique produces classic recursive-
descent parsers. such as those presented in undergraduate compiler classes.
Where a recursive-descent parser would have a subroutine dedicated to the
recognition of each rule's right-hand side. these parsers have state-machine
recognizers, and these recognizers are linked together via a "subroutine-
call" mcchanism based on a stack. In what follows, we will often describe

the actions of these parsers using terminology suggested by this metaphor.
From another point of view. this construction technique produces clas-

sic push-down automatata. The state-based machines constructed for each .,.

grammar rule are finite-state recognizers for the right-hand sides of those

rules. and tile dots iii their states indicate the expected position of a read
head in the parser's input. In this context, the stack push and pop instruc-
toios act at; t-transitions between the various recognizers. and the parser -
appears as a non-deterministic push-duwn ,•itomatoni whose finite state con-

trol coitpares substrings of tile input against the right-hand side of gram-

mar rules and whose' stack monitors the con ter-eml bdde heIesr of tile input * I
as a whole. In what follows, we will also use terniniology ;tiggvsted by this
metaphor.

x.I
"..". -°, .

'4- 0

bo

2(0 3 Motivation for the Ag! rithmnO

3.2. Simulating the State-based Parser

Ill order to .innilat. a par.cr -t nlstrct'd as abov'. we ninut itrforni all
the actiolbs which fdllow frmoi all lo,.-iltv noi-ditlcriini.tic choicer,. The

recllrsive-(e.$e1t inctal)hior sugges.t.s that w, do thi.• with it .cqu(ntial ap-
proach that empIoys hacktracking. while tli, amittiaton metaphor sIuggests
a parallel approach in which one siimulator state repres(ents a nmbher of

reachable parser states. We shall adopt this latter approach. and keep track
of all the (state. stawk) pairs reachahbl b)y a parser at each step of the in-I put. The result of thie simulation will be a sequence of lists of reachable
configuraLtions. much like those used ill the sample parse above.

3.2.1. Preliminaries

We use here a slightly different representation for the stack segment of a

configuration than we did in the sample parse above. In line with our
subroutine-call point of view on push operations, we will not keep the whole

stack with each configurationi. Rather. each time we make a transition to

the initial itate of a recognizer. we will keep a return pointer which indicates
the configuration we were in before entering that state.

For example, we presented above the configuration sequence for the parse
"of cca. If we make tile representational changes just described, we obtain

-. -,,the following, more compact representation. in which we have subscripted
the configurations for use in return pointers:

0() [S-. Aa, 1]1
[A -- •C, 112 ;expand A from item 1
[A - cA, 13

"1 (c) [A -. C., 114
N' [S - A-a.]5 ;return to item 1

[A-. c'A.Ile
f A -- c. 6]
[A MCA, 6]s

2(cc) [A . c, 619
"[A -. cA -, 11o
[S- A •a, J11
[A cS-. A,1
[A c, 12)13

4..

-. . ..--..

h*...'a-

,.•in2latim, fit- Slu' tSi-bt-lu.-d Parser 21 01

IA (.A. 121 14

3(cca) [I S Aa " :accept

WV cill the [(state). (return pointer)] pairs tsed here dten,. to distinguish .

tleivi from configuration representations that show the coniplete stack.2

3.2.2. Multiple-Call Collapsing

It is convenient to think of this method as simulating. Lot one. but many
non-deterministic parsere at the sarne time. As these parsers run, they
make different decisions at e:ach choice point. anid the simulation keeps track.-.

of all the different configurations they get into. At any position in the
input. the current state of any given parser is contained in some item on the
current item list, and the contents of that parser's stack may be compited
by following return pointers, from that item upwards.

It may happen. however, that two parsers whose stacks differ enter the
same state at the same position in the input. For example. consider the
following grammar G':

"S' .- Aa

A-.cA

G' derives thle same strings as the grammar G given above, However, if G
derives a string via derivation tree T. then G' derives it via the following .

two trees:

,Thvir relatiouhhip with Earley itenm is exarnined below.

-. --..... A. .

Sr.T_;me

Z.".

* .-

.1o.

I.'

22 3 Moltivation for t11 Algorithm i'

Tree 1:S Tree 2: sS

T, -.

The pairallel stnicture of these treps can be seen clearly in the following
simulation of a parse of cca under G':

0(,) IS- .S', I,
$'" Aa, 1]3

[A- .c, 213
[A -- .cA, 2)4"'.-

[Sir.St, 515
* S" , IS',5"6

[S' - Aa, 6]7 ;compare with item 2

[A -,. c,71s
[A [-. cA, 7]

1(e) [A -. ., 2],o
IS' A-- a, 1111
[A - c A. 212
[A -. C, 1211 3
(A -. *cA, 12]14

[A --* c',7]1b :compare items 15-19 with items 10- 14
IS' - A, a,6 1•]
[A - c.A, 71,7
[A - c, 171is
[A-. cA, 17] IQ

2(cc) [A-. c,, 1212o

[A M-, -212,

IS' A

-~[-~ c -........ 23

*...

%L

3.2 Shijulating the Stati-ba.-erd Parser 2 30

"(A - c.23124

I[A cA. 2312 5

""A - . 171.o-
[A -. A -. 7127 .
IS[,' -- A a. O[2 s
[A -- ,A. 1712,

S.... [A c. 2013o
[A - - cA. 29131

3(-ea) (5' -. a . 1132

"iS -. S' 133
IS' Aa .,6134
[Is- s" .. In

"The possible configtrations obtained upon reading each of the input tokens
break cleanly into two groups whose state transitions are identical but whose
stack environment is different. Each group can be thought of as containing
the configurations of a different parser-one predicting the derivation that -
starts S -- S' and the other predicting the derivation that starte S - S" -S

S'. The similarity between the two groups is a corollary of the fact that our
grammar is context-free. In both cases we are seeing the transitions involved
in the leftmost derivation of cca from S"; these transitions must remain the
same regardless of the context of S' in the derivation. ''

The key observation here is that, when the recognizer for a given rule .!

is called, the starting position of that recognizcr in the input completely de-
termineq its behavior. A particular recognizer may be called fronm parsers
with a variety of stack configurations. but if all the calls occur at the same

input position. we need only simulate the state traneitions. made by that
recognizer once: the results can then be used in all the parsers that made 6.
the simultaneous calls.

With our representation, thi- optimization is easily made by turning
multiple calls to the same recognizer at the same input position into a single
call with multiple returns, Thhk leads to the following parse list for cca under

G' (each item now contains a set of return pointers instead of just a single

0o1e):

N(O) IS -S. 0

LOA 6d

. .
%i

%.

Io "

24 5 Motjvatjon for the A.,!,rit1,ui,

IS" S" . 2)3,
IS -' .- , .{ 3}) 4 :1,0,,,part with, it n,, 2 anl 7 a ,v,.

(A -- ',. {4}]s
A -. "a, {4)]jo

I(c) IA - c*. {4}17
(S' A. a. (1. 3}]s
!A - c. A. {4}]go

[A -~C, f{9}hO
(A -c cA. {9f)Ij

2 (cc) [A C. c.{12
[A M-cA. {4}113
Is' - A. .{1.3),14

[A-- r-.{,}]9] 1"
(A C.

[A -- .cA, {1,5}] -"7
3(eca) IS' -Aa.-, 1,3}],•,

"is S, {}Ijg :return to item 1, accept
IS" S', {2}]20 ;return to item 3, ...

S S"., {}1]21 .. .accept

p.,%

:1:

A iuisil way to conceptualize the optimization performed here is to visualize

the parse trees. "Imill" by the pushes and pops of the various parsers being S
simulated. Before the optimization, the simulator built both of the correct
derivation trees:

* $.

3.2 Sinjuiating the Sta'te-Inscd Parsewr 25

S- S

SII
A/ a

I .÷ I

II ". .

C ~C W
N ~~~After the optimizationl. it builds the following hybrid t. cu

7 S

-/"

TeAtter ~th opcture contains the sifiol informsatior about the p.r..a

* two prirwioiis trees togethier.

7o, A

26 3 Motivati(ju for fhli ,41uorithi 0

3.2.3. Left-recursion

An inilortaInt .Ulb-c'asc in wh9'l l IliltiplJ.ccd1 (ollapsilig is app)licabl' is t hat
of left-r.cuirsivw grainiuar rulh.., Tl•,.v ruhl.s prv,,'i wc'l-knmuw difficulties

fir dct'rrilinistic riitrsiv•-.dv.ScVJt [)Lrsrs. |eeia su tlih parser can not know 0
how inaiiy t ili's to iwivok, the recursiv(eXpansionI of a noni-t(urlhhinial withowt

looking ahead in the input. For example. consider the following grammar:

S - Aa
A-.c -,

This grammar derives exactly the samie strings as the riglit-recursivc gram-
mar G given above. but consider the following -parse- of the input string
cca (we have not used multiple-call collapsing):

0(t) [S -. Aa.] -
[A --- c. 112 :expand A from item I
[A -, Ac. ha ;ditto
IA - c. 314 ;expand A from item 3 (uh oh)

[A -- .Ac, 3"5
[A-. .c, 5je ;and so on "
[A A- , 5)• -c-

[A -•c, 7]s ;and so on

I1(c) [A- c -, 11w0+1
IS -- A4 a,]],,.-2 ;return to item I[A c -, 3]w.,.3
[A - A" c, 1]i,--4 ;return to item 3
A-. c., 5]o, -. %

[A - A- c. 31,,-e ;returhi to item 5 (uh oh)

[A C 8. ,7
AA -- A c, 51,,+s ;and so on ... -.

2(cc) [A - Ac.

[S -. A' a. 0oo0oo+0+2

[A A]oo-
[A -. A c. 1300±00o. +4

S '

S•-

_ ,2-

3.2 Smilarigtin'i, State-ba.wd Parser 27 01

[A -- ",
(A A--],.o. .1 o+, --.

0~123(,,,a) (S -- ,A,, a

If we perform multiple-call collapsing. howver. something very initeresting
happens:

0() [S - Aa, {)I,
[A -c. {(. 3)12 :expand item from items 1 and 3
[A - Ac. {1, 3}13 :note the self-recurnion here

1(c) [A -. c•.{, (1, 314

[S --- A*a. {}- s ;return to item 1 .
[A - A. c, {1, 311o and again to item 1!

2(cc) [A - . 1, 3 .17

IS - a , { ,: •

[A A c, fl. 3)]o

3(cca) [S Aa., {}Jo

The subtlety here involves item 3, which serves the same purpose as items 3,
5. 7. 9 ... ,in the previous simulation. We are in fact simulating an infinite
number of parsers here, one predicting each of the following parse trees:

At any given point past the first c in the input. however, they have all invoked
the same recognizer (for A -. Aa) at the same point, so the simulation keeps
just one representation for all of them.

3.2.4. Duplicate-Item Merging

the same recognizer at the same point in the input. If we consider only
unambiguous grammar, this is the only case in which recognizers invoked by

4. .A

28 3 Motivation for tlh U.Agorithm k,

diffcrcnt parsers are guaranteed to perfoirm ideittical •ctions. But consider
thlw fo(i~llin all igb•,llonzi .rainiar fra-miclt: '•

S -A ...
A -- BC
B b
B - bb
C -bc

This fragment produces the following two derivations of the string fragment
bbc:

A A

B/ \ CII:
b b c b .'.

These derivations are recovered in the following parse:

0(e) [A -- "CB{}C.
[B - -b, {1)12
[B - -bb,{f1}]s

1(b) [B--b.,{1- b
[A-- B. C,{)]
[C -. .b,{5}]s

4
W [C -. c, f{5)16IC C',{f 517

[B b'b, {1}]e

2(bb) C -- b.c. 15})
[B bb ., }Ifio
[A - B C. {}] ;conipre with item 5
[C - bc. {I }11}2

IC --. c, {11}]3

3(bhr) [C -. bc.. {(51 4

[Cc- , {B.111"

[.v

__,. '64

5*" " - '- . . . - . - ." - ' ,'" -" - . - ." ". . i 2 - - '"" -- - . " - ' - . - -i '

ti

3.2 Simiudating the Stti-te-bid Parser 29

[A -4 f(". {}]t7 ;Cxoilare with ite'i 15 N-

Not tt that item.s 15 and 17 ar ent ical. Thl sittiati n encouttered herer"
is q ite imilr t.thatin -hi , wc iuowke noiltiple-call c~llapsing, ini tha~t ,

recognizers for the sale rule invoked siittiltanimisly by different parsers I
have reached the sanie state at the same point iii the input. In this case that
state is ',t the recognizers" initial state. but the same reasoning shows that
bodi recognizers will perform identical actions until their respective parsers

tiake differing derivation decisions. Thus. as with imultiple-call collapsing.

we need only klmp one item to represent the state of both recognizers.

3.2.5. The String Algorithm

We are now ready to state our string parsing algorithm. The algorithm
takes as input a grainniar G'and a string a. and determines whether G
generates s. The output of the algorithm is a sequence of item lists--one

for each symbol in a--which represent all the configurations reachable by a

non-deterministic string parser for G operating on s. The algorithm does
not construct a parse tree for the input, but we show below how it can easily
be modified to construct all possible ones.

The algorithm operates by using a list of items Ii to keep track of all
the configurations a parser might be in after reading the i-th input symbol.
Given lists 10, .-- , I,-,. the algorithm constructs list 1, by using three "

operations:3 a scanner operation. a predictor operation, and a completer
operation. We first describe the nature of these operations, and then how
the algorithm uses them to construct the lists Io, 11, 1.... I. "

The Scanner

The scanner operation takes as input an item i from list I,_1 and the j-th
input symbol a,. Let ., be the state part of i and r its set of return pointers.

If s has no tramnsition on a,. then the scawner does nothing. Otherwise. s
has a transition on a2 to some state s'. and the scanner creates an item i'

on list I2 whose state part is s' and whos,, list of return pointers is r."
We can abbreviate the scanner operation a.; follows: Let [A -• a. t.r]"'

be an item from Ij-1. If t is the j-th symbol of the input string, then the 4
scanner adds the item fA , oft, r] to Ii.

"The nnanes of these operatiumi are tiken frot jEarley 1969).

4j4

.4

. .

.

33 Motivati, for thJ, Algorithm.

The Predictor

The predict or o(wrattion takes ;Is ilit ;uai item i frin list I, If the state

part 's of i dloc- not have a transition (,n a nion-terminl1l imhle. tl'lei tilt,

predictor oIHratiot does nothing.. ()tlirwisv. let .4 Ie the non-teruiinal onl .

which s has a trwisilion. a,'(d let :4, '.4.... he Ie the initial At at es of all the I
% recoglizers for riuls which derive A. For each si. the predictor operation, -

"- checks to see if there is an iteni with state part s, on list I. If so. the

predictor adds i to the return set of that item. If not. the predictor creates
am item with state part s, and return) set {i} and adds it to 1].

We cai abbreviate the lpredictor operation as follows: Let !A a-- B 7 , ri-
be an item on 1. F�or all rules B -- in G. the predictor operation searches

1) for an item of the form [B -- ,..r[- If it finds one. it adds i to r.

Otherwise, it adds an item [B.-- • , {i} to I,.

The Completer

The completer operation takes as input an item i on list 1j. If the state .,.'

part of i is not the accepting state of a recognizer for some rule of G. the

completer operation does nothing. Otherwise. let A be the non-terminal

derived by the accepted rule. and let i, . . , be the members of the @1

return set of i. The state part of each it must have a transition on A; let s5,

s.,y be the states led to by those transitions. For each ij. the completer

looks for an item on I4 whose state part is sq and whose return set is that

of i,. If it finds one, it does nothing, otherwise it adds such an item to 4i.
The completer operation may be abbreviated as follows: Let [A --- r,.

be an item in Ij. For each item [B -- a. AO, r 21, such that i E rl, add

[B -, aA - 0, r21 to I; if it is not already there.

The Algorithm

First, we construct 16 as follows:

1. Let el. .. ,. ., be the initial states of recognizers for the rules in G

which derive S. For each s•. add an item to l0 whose state is ei and

whose return set is empty.

2 Complete lo by iunniing the predictor on every item in it. If new items "1

are added to it. run the predictor on them, anid repeat this until no new

items are added.

-- ' ." ..c',%• %A ".-.., " "'" " ." " '- 1 "

3.2 Sinjulating the Statc-based Paser 31

Next. we surerssiv, ly comstrtct !j iv.iwn It .. 1. . we construct
-S.1 as follows:

3. Pun the scanier over every item in ii .

4. Run the completer over overy itevi in Ij. If this adds new items to I, run
"the completer over thewr. aid repeat this until no new items, are added.

5. Run the predictor over every item in 1,. If this adds new items to I1. run
the predictor over theni. and repeat this until no new items are added. ,

A little thought will convince the reader that this is indeed the algorithm
used to produce the lists shown above. A string is accepted by this algorithm
if I, contains an item whose return set is empty and whose state part is the
accepting state of a recognizer for a rule deriving S.

3.2.6. Why is this Earley's Algorithm

The algorithm described above does not appear. prima facia. to be Earley's
algorithm. The apparent difference is due to a couple of factors, both of
which we examine here.

Abbreviation of Return Pointers

Our algorithm uses items of the form [A -a a'•,r where r is a set of
return pointers. Earley's items have the form ýA - or/3, ii. where 1, is the
number of input symbols read when the A recognizer was first invoked. (Of
"course, at that time. the recognizer was represented by an item of the form

These representation, Feem unrelated: however. some thought reveals .
that we can encode our representation in Earley's form. An item of the

form [A - -a. r'. when added to list ,. represents a call on one of A's
recognizers at point i in the input. Thus. the callers of such an item--the
members of r-- imiust be all the items for recognizers which expect to see an'
A at point i in the input. But these items are exactly all those on I, which 0
ihave an A to the right of their dot. Thus. if an item of the form iA- a, r'

appears on ,, r njust consist of exactly those items on l, that have an A to
the right of their dot. so we cal encode r with the integer i.

6%.

.e..b. * ~~~ *

I.'.

32 3 .vlotivatioun fIr the A1gorithm 0-

Handling of (-rules

Ea r hcy'. algrith im handIhs graninjars with productionj., of tlhe forir A - .4

This involvwc ., ninnig t li' comphltetr on jl). M*idt alterlAtilig the repeated

application of st eps 4 aIn ,5 (ihistead of applying o(ie repeat idly and then
the other).

If these step-, wrv added to our algorithm. •nd if the repre.sentation were
changed as mentioned above, our algorithiij description would agree exactly

p] with the description givcu by Earley in [Aho ad Ullhian 19721.

3.2.7. Using the Algorithm to produce Parse Trees

The algorithm we have presented here is actually an acceptor, not a parser.

That is. while its output indicates immediately whether or not the input

string is in the langguage of the input grammar, it does not provide a parse

tree.

Algorithms are available from a variety of sources (e.g.. [Aho and Ull-
man 1072]) which produce a parse tree from the parse lists output by our

algorithm. in addition, consider the following definitionR of the scanner and

"completer operations:

The Completer

The completer operation takes as input an item i on list I . If the state

part of i is not the accepting state of a recognizer for some rule of G, the

completer operation does nothing. Otherwise. let A be the non-terminal

derived by the accepted rule, and let i1. i,. be the members of the

return set of i. The state part of each i1 must have a transition on A; let 81,

am be the states led to by those transitions. For each ii, the predictor

looks for an item on I1 whose state part is si and whose return set is that of
i,. if it finds one, it adds to it a pointer to i and a pointer to I,. otherwise

it adds such an item (incliding these pointers) to .1.

The Scanner

The scanner operation takes as input anl item i from list Ij_1 and the j-th

A N.'Our algorithm need not hauidlc these productious. since wv er iu(cr..tedl only in gener-
alizing it to graph granuaiars (in which such productions cou not occur).

-. 4.-.

_ .- -,* ..

3.2 Si'whlating the State-based Parser 33 0

illl)llt sym bol)tI a . Let s b , Ilitc statvt , part of I anid r its .ivt oif rvt irii pointcrs.

If -* Li it) trainsition ol t. th tIi tlh', scanlnell t hucs noth inig. O t hli rw is . ,

hais a tran-,it io0 on t•l to soimeC statvt' ,. m id I]he s(' r 'reat ,|l Jal itt'i ll z 1-.

lis t 1, w h o .se s ta te p a rt is . . w l h .• , li ,s t o f re• t r pr l i tfnl ,r. i .4 r , a n td w l ic hd ,.
colitains thlet sa ie co'm pl ,ete'r.atlt 't pointers a .s i (if ally/,

If th ialg•orithIn lis(,s t I (5(d ,fin Itiouis. vac 'h it ''Iii of the ' forin [A -. a r
in the constrncted lists will be th,, root of a pointer structure giving aIl
the dtrivation tre•es for that instatice of A in the input. bi particular. if a

senten~ce is acc cpted by the' algorithm . the item s of the form [S -- a .. { •Q
on I, will be the roots of ,all the derivation trees for that sentence.

S',.

S. -"

I--

N .°.- -.

P7'i

, ,.,
3-fb

I341 3 Mlotivaitunj fur tJ•, AlgoritlhmjO -

".0o

U.

"-I.%

• .4,

S..

"• °"

.5.•.

C-"

S,.

e..W

* Chapter 4.

The Algorithm

In this, chapter we present our flow graph Parsing algorithm. The inputs to
the algorithmn are a flow grammnar and flow graph: its output is a sequence
of lists sinfilar to the itemn list's produced by Earley's algorithm.

Asi in the last chapter. we will Produce the algorithm by developing a m
* - ~non-cdetcrministic parser and then simuulating its behavior determinimustically.

Both the parser and the sixiiulation techniquie generalize those we used for
strings: the resulting algorithm is a generalization in that, when it is run onp a string graph, it performs a superset of the actions performed by our string
algorithma.

4.1. Non-Deterministic Graph Parsiers i
The method we used to construct a parser for a string grammar consisted 6

essentially of two steps:

1. Construct recognizers for the right-hand sides of each of the gramnmar's
-~ productions.

42. Construct a stack-based machine out of these recognizers by replacing -
their non-terminal recognition steps with -subrou tine calls- Or4 other rec-
ognizers.

We will apply this saine method to flow granmmnars in order to construct
flow gr~aph parsers. The nature of this construction is determined by ourA
grenerlizat ins of (i) the muechanuismn used to read timv parscr's input. (ii) S
time recoguui'/ers tused for thev righut-hand side, of granuiniar nlilh's. and (iii) the
linuikg~e umcchii~isif usedl to interconneuct rccoguuizers. EaLch of thvsv gene'ral-

35

P A . -

GI The Algorithm .
N9

?" izatijols pre .• r,.'(ve .inti titions that aris e in tle string cas e. but phras(s these
"intiuitions so as to inak(theivn ajililicaih' to graphs as well a;, si rings.

4.1.1. Reading a Flow Graph

-~~ Outr string 1parser conIstructed a parsc for its input while readling it utice froin
left to right. wull soi will oiur graph par.er. "Oncv' iicani. that the parser Will
look at each node in the ýiput only one time. Froin left to nght" means
that the parser will consider nodes in the partial order imposed by the input
graph: that is. a node in the input will be looked at by the parser only when
it has already looked at all that uiodes predecessors.

As mentioned in the last chapter, it is natural to think of our string
parser as an automaton using a read head to examine its input. This head

moves from left to right over the input, passing the symbols read on to the
state-transition functions of the parser's active recognizers.

"Our graph parsers will examine their input graphs as if they. too, had
read heads. These heads should be thought of as "multi-track" heads which
"can be positioned over more than one node at a time. They start at the -'

left edge of the input, read nodes one at a time from left to right, and pass !..

information about these nodes on to the state transition functions of the
,.1 parser s recognizers.

For example, consider the following graph:

'i~i

A parser reading this graph would start off with its read head positioned to
the left of the graph's two minimal nodes. like this:

"."

4 t- 1el4e-..L . . -. ' ,O

4.1 Non-Dteri'iniefir" Grnph Parscr. 37 0

* /

No ,

It would then select one of the two ininnial nodes to be read next - we don't
care which. Let us say it chooses the upper one; this wouhl leave its read "

head in the following position:

Here the parser must again choose which node to read: let us say it again
chooses the upper one. "'he read head would move over this node to give
the following position:

yN--

I. 0

V ., CL/

t
"'

V * # , -¢ Z - -
%%.-r-'''

: ' -' - "i. " ' " * '** " -' I . . "'. 1 " .i

.° -.

""8 4 The Alg•orithm .O

At this po)inlt. there is only miieio dch' thc lower oie atvailable foir reading.
Tttititiw.'ly. rth' read hiead is nt - just to tle left- tif tlh' graplh'.i maimalx-•'I

* jio: there is still a preceding nodle which iiust b, read first. Thus". the

next read liadl posit ion is aL. follows: OS

.9.

- °

Finally. after the last node is read, we have:

and the read head stops.
We have indicated the position of the read head at each stage by denoting

the unique set of edges (possibly leading or trailing edges) all of which follow
all the nodes already read and precede all the nodes yet to be read. We call -O
these edge sets head posiiioni, and we precisely characterize the order in
which graph parsers examine the nodes of their input as follows:

S.4.,

I. Each parser is considered to have a read head. The initial head position ,..-
of the read head in the input consists of all the input's leading edges.

2. Tihe parser can examine any node all of whose incoming edges arc in the
current head position. (Such a node is said to be in the right fringe of
the head position.)

"•~.
- o .

LA

4.1 Non-Detunjiiistir Graph Parsvrs 39

3. When a parser whiose read lhead is ill position p vxa miv. a itode f. its

read iald 11oves tO a inew poIsition I/ cal'ulated by taking p and rplaciing

n s invominig edges by its outgoing oi.es. (We call ij/ thc n-,m•'ce.sor of
1. The nodt n. all of wholte mitg.in.g edges ar' now ill I/. iS Salid to be In
the left fringe of p'.)

4. The parser JxuCines nodes one at a tiieii until it reaches a head position
with no nodes in its right fringe.

The reader can verify that the example given above meets the above con- O

ditions. Some thought will also show that (i) a node is nover read until all
its predecescors have been read. and (ii) this method, when applied to any

-,flow graph. eventually read:" all the nodes in that graph.

It is worth noting that this. method, while phrased qo as to apply to all

flow graphs, describes exactly the motion of our string parser's read head

through its input -string graph." The string case siniply niakes no use of

the non-determinism iniherent in step (2).

"Each time a graph parser examines a node. it passes three pieces of in-

formation to the state transition functions of its active recognizers: the type

, of the node read. its left-linkage information (a set of port-edge pairs), and
• its right-linkage information (another set). As with our read-head motion

rules, it is worth noting that this list describes in a general manner the exact
".4"' information read by the head of a string parser. In the string case. however,

the left-linkage and right-linkage information are both trivial: it is always
the case that the only edge in the old head position went into the node's
only input port, and the only edge in the new head position came out of the
node's only output port.

4.1.2. Flow Graph Recognizers

The right-hand sides of flow-grammar rules are flow graphs: thus. the recog-

nizers from which we build our parser will be flow graph recognizers. These

recognizers will receive type and linkage information about the input from

the parser, and compare this information with that found in their target
graph -the right-hafid side they are recognizing. Their structure and func-

tion will be gelmerali zations of those of their string counterparts: that is. they

will be state machines which inake transitions based on the input read.

o• -

"F-'
° ..- ,-.°, ' °

'I 1|I •

.- _. 7u - _ .-

i1... ' " i

40 4 The Algijrithu 01

Mr,

Figure 4.1. A grammar.

S -

Figure 4.2. A graph generated by the grar.ar of figure 4.1.

4.1.3. States

A s9tate in a flow-gr~aph recognizer consists of pairs matching edges in the
recogniizer's target graph with edges in the parser's current head position.

For example. consider the grammar of figure 4.1. and the graph generated
by that graninar shown ini figuxre 4.2. At. some point in the parse of this 0"
graph. the recognizer for the right-hand side of the A-rule minght reach the
following state:

vi

-)J- _-- -L "C X.W.-I..7

•-". ,

CCA

We have indicated the parser s head position as in the last .ection: the labels
oln the input-graph and, target-graph edges indicate the pairing which is the
state. The target-graph edge paired with a gifvel input edge is called the
target image of that edge: the latter is the input irnagt of the former.

It is convenient (albeit redundant) to think of a start, as having two
parts: (i) a set of edges from tiOe target graph, and (ii) a 1-I correspondence
between that spt and some of the edges in the parser's head position. In v.

this view. it bocomes clearer that the states of our string recognizers had
the same composition: their edge set was the edge denjoted 'by their Earley
dot, and their correspondence was always the trivial one sending that edge
into the single edge in the parser's current head position. Tie triviality of -- 4

this correspondence allowed us to ignore it and "pretend" that the states
of our string recognizers were completely determined by their dot position.
We do not have this lxury in the graph case: for example. examine the two
states shown in figure 4.3. and consider which of these states should begin

a transition sequence leading to an accepting state.

4.1.4. State Transition Functions

The state transition functions of our graph recognizers take as inputs a
recognizer state and the type and linkage information of an input node:
they produce a new recognizer state as output. Recognizers operate in the

expected, manner: they apply their state traisition functions to their current
state and the information returned by the parser's read head. and then make
a transition to the new state returned by the transition function (if any).

The state transition function of a graph recognizer is best thought of as an
algorithm that proceeds in two steps: it first determines whether a transition -- 1exists from tile given state on the given input; if so. it thecn determines .----.

the state that the trinsition leads to. hi other words. the algorithm first
determines the acceptability of the iiput. and then it determin•es the correct

%A

*1!i~

'~*..*. --. "

42 4 Th" A1igu,)rithm

,-J

eL-

A,'%

Figure 4.3. Two state, which differ only in their correspondence part.

U I,°

r -- . -..-

4.1 N~ui-Deteriuniistic Graph Parsers 43

9 L '

N. .I-z

-.- •o

.•a-&- b,, b\ br -'"~

b,•,,II ~ b~ 6 ,€,•- "

cb
(C) C. -.:L CA-

.- '1

next state for its recognizer.

Acceptability is determined by comparing the type and left-linkage in-

formation of the input node read with that of the target graph node which '.

corresponds to it. More precisely, let s be the the current state, let n be the

input node read. let L be the set of input edges of n. and let. L' be the set
of target images of L under s. If L' consists of all the input edges of some
target graph node n'. if the type of n' is the same as the type of n. and if

the port adjoined on n' by each edge in L' is the same as the port adjoined
by its input image (in L). then n is said to be acccptable and n' is said to be
its target image. Figure 4.4 shows examples of acceptable input situations;
figure 4.5 shows some unacceptable ones. -

Once the acceptahility of ani input node has been determined, the new F @1

state to move to is computed by matching its right-linkage information .
against that of its tauget image. More precisely, let s. n. n'. L. and L'

AP1

*"°"°."

44 4 TF),e .4J.��rit), itj 0

ft
' '

-A-� -WJ�-� -

1 4.

� fl ii 4J.�AL�Cpt.r�,k � bjrc)

".M.

n.� � �

I-.
L

Figu.re 4.5. Some unacceptable (statc. input) pairs.

"0

S

4.1 Nun-Detcrministic Graphi Parsrs 45 S

-A'-,,

-" A

4•(..-

D -- "be

L
C.

\ C-
-C.'

Figure 4.6. New (state, input) pairs computed by the state-transition algorithm
"from the pairs of figure 4.4.

be as above, let R be the output edges of n. and let R' be the output edges
of n'. The new state q' is computed by (i) deleting from . all pairs involving
edges in E. and (ii) adding a new pair for each edge in R. In step (ii), the
pair added for an edge e which leaves n from a port p pairs it with the target
graph edge e' in R' which leaves n' from p. (Since n and n' have the same
type and thus the same port sets. this operation is well-defined.) Figure 4.6 t *
shows the (new-state. new-input) pairs computed from the pairs of figure 4.4
by this procedure. Notice that state pairs not involving input edges to the
input node read are unaffected.

As the reader may have noticed, this procedure agrees with that used to

determine the state transition functions of our string recognizer. ln fact, ifwe take into account bollh the edge mapping implicit in our string recognizer

states, and tlh linkage information implicitly read by the string parser read

.4-.

- * -**-

S...-...-.

-.2.

:%

S40 4 The Ah-,rith1 ,i

5-- 6L

e"O

d- 3

Figure 4.7. A graniniar and a state i-n whLich a snb-r(cognizer should be invoked.

.4..,

-a-

Figure 4.8. The initial state of the sub-recognizer invoked from the state of fig.
ure 4.7.

head, this ia the procedure used to compute the state transition functions
in our string parstr.

4.1.5. Linkage Mechanism

Whenever a recognizer moves into a state whose edge set contains inputs to a

non-terminal, the parser will invoke a sub-recognizer for that non-terminal.

For examaple. consider the grammar and state shown in figure 4.7. Two of

the target-graph edges in the state of the S-recognizer are inputs to the

non-terminal B. so the parser calls a recognizer for B, giving it the initial

state shown in figure 4.8.

The initial state of the D recognizer has followed by "transitivity' from

the port-correspondence ihformation in the grammar nile for B, hi general,
suppose recognizer state s contains target edges e' -target inmages of edges
e, -which are inputs to a non-termiima node n'. The parser deletes any edge

% * pairs from s which involve the el chooses a production P which -erives the

. ...

.4': • • - L ; ' _. r , • •" _ : :• • , . ' . . "• , __• : , : , , . • 'o " . _ • _ . . : _ . ", : • . • • -: .' " • - , . j " , : '

SI

4.1 Nou -Duternuduistic (Graph Pars.ers 47 '

Figitre 4.9. An accepting state for the recogfizer invoked iii figure 4.8. Tlhis rule
should be reduced.

Figure 4.10. The result of the reduction invoked in figure 4.9.

type of n', and invokes a recognizer for the right-land side of P. The initial
state a' of this recognizer will contain one pair for each edge e, as follows:
Suppose c' enters n' at port p', and suppose port p' is mapped by P to port

p1 on port ni (in P's right-hand side). Then A' will pair the leading (target)
edge entering n with ej (the input image of e,). The reader is encouraged
to verify that this procedure produces the state of figure 4.8.

The operation dual to invocation of a sub.recognizer is the return of that
sub-recognizer. In the cxamiple given above, the state of the B-recognizer

after the parser reads node n will be that given in figure 4.9. The edge set of
this state contains a trailing edge, so the parser will reduce the recognized
nile and move the calling S-recognizer into flw state shown in fignre 4.10. In
general, whenever a state contains a target-graph trailing edge. the parser

will perform a reduction by adding edge pairs to the calher's state in a

procedure which rcvcrses that used at invocation time.

The reader must by now be expT-ting the following claim: this linkage
mechnanism is a general phrasing of the exact nieclianisini used by the string
parser. It simply make explicit the mianipulations of tiw target-graph/input-
graph edge correspondence that were left implicit in the string case.

-&.1%*. - .-S

':i... .-...........-. -_...................._.....,..._......................-,,.... .-•-.

-@4

48 4 Thu Algorithl•i
0

4.1.6. Flow Graph Parsers

We lavv(' now introduced the thrie basic ico',iipoiieiit s of onir par•er ('oll-
,,trii't i,, t,,hiiiiqiiv: (i ,,thlidiii.-ui for r,,dlinig tlh,, iuput. tlie rte, gnizr-rs for

individial titles. and lhv linkag mcchliaui.m iseld to inti.rc'titot rv,'ognizers
for differiit rfles. Rlather thiai sta t, a co(mpleh,te colnstri etion njuchaliisni-.

(as wv did1 in the previous chaptcr). we will instead consider two examples of

grauiiiar/graph pairs and the behavior of the parser constructed for them.
These examples will expose some details of the coi•struction and behavior
of the resulting parsers that have not been conmidered thus far: iii addition.
they will introduce a representation that forms the basi.; for that uisd by

our simulation algorithm.

A Simple Example

Let us start by considering the behavior of a parser constrncted for the
following simlple grammar:

when n-in on the following graph:PA

,- ,-.-.:
.. V- -- -;i

4.1 Non-D eterwiui-tiC (Crap I P ,rserS 49 .1

Thjit parser starts off by calling the recogtnizer for the right-lland Side of

the nile deriviig S. The parser stack is e ipty , an ,d l its read head is ov wr

the leading edge of the ilipiJt. Since there is only one such edge. the parser
has ino choice in , deter iining the *.-recognizer 's initial state: that is. there .*

is only one pozssiblh correspond(iice between the leading edges of the input.
and those of the 8-recognizer's target graph. (We consider below how to

make this choice in general.)
The initial configuration of the parser is as follows:

" "-"

-'+ ... C .-_ .. .

At this point. only one node in the input is readable. As the parser's read

head reads and moves over it. its type and linkage information is used to I
-make a itate transition in the S-recognizer. Of course. if the state-transitionalgorithm determined the input to be unacceptable, the parser would stop '

and reject the input. In this case, however, the parser moves into the fol-
lowing configuration:

--

"" ."
4.

This Ptate contains target edges which are inputs to the non-terminals A @ _

and B. The parser thus invokes sub-recognizers for these nodes, moving
uito the following configir.'ation:

.
-?.4 .] -

50 4 Thc Algorithli

S0

•b%Z

e, 6

-. ,,

.4q

-. e

4.A

The following points are worth noting:

e We are no longer using a simple stack to keep track of sub-recognizer calls.
Because multiple calls may be made from a single state, we use a "tree-
shaped stack' that keeps track, for each call made, of both the calling 5
state and the particular node being recognized in the caller's target graph.

". This behavior appears different from that of the string recognizer, which
left ai -Earley dot in front of the node being derived. In fact, this dot

served to identify the node being derived-a function now handled by
information kept on the stack--not as a state marker.

I.

The p.r.er is now ready to read another node. Let its say it reads a; this
leaves it in the following configuration:

S"

-. ,(, .- .- , - • -.4 . " , • • ., . : _ _ ,' _ " " . - ," . $ - _" . ' . .•

'-P

4.1 Noiu-Dct.rijijist ir Graph Parsers 51 01

tb-- .'1

The recognizer for A Las now moved into an accepting state. so the parser
reduces the production involved by moving into this configuration:

4.

Note that the S-recognizer has changed state while its call to the B-recognizer
is outs.tanding. This could never happen in the string parser. To emphasize
this mutability of the state information stored in a graph parser's stack, we
think of the stored ihforination as state objects rather than states.

Next. the b-node is read, and the B-recognizer changes state accordingly:

"-.r. . -:-

52 4 The Al•orithm

e-,'

The B-recognizer has now moved into an accepting state, so the parser

reduces its ru'e and moves into the following configuration:

Notice that the S-recognizer state-pairs derived from the reduction proce-
dure are added to those of its prior state. This additivity, together with the

tree-shaped stack. allows multiple simultaneous calls to sub-recognizers.

Finally, the parser read the m-node and moves into the following config-
uration:

Ne

Cb

The parser's input hais been completely read. and its trailing edges are in U
corresponIdence with ,dl the trailing edges of the S-recogiiizcr's target graph.
The parspr accepts. . -.

.4

.4

*, .CC

- . . .- - - . - -

,I.1 Nn,,-Deterministic Grap)h P.'ser. 53

A Complex Example

ThIe follhwing examphl demon12strate,(thl behavior of a pJiu'sr whose gra--i-
]li~tr Julil r('ad-hl(ud in(tiii c(mbinW to produce -staggered invocationIs aul4-

reduction.s." Consider the following grammar:

- .. t"@

- .'

which verives the following'graph:

*1wSm

Unlike the grammar considered in the last example, the start symbol for
this grammar has two inputs, so the parser constructed from it must make
.ome determination as to which of the input graph's inputs correspond to
which of the start symnbo's inxputs. In general. there is no way (short of
trying each possibility) that a parser crm determine which choice of corre- .
spondences. if any. allowt a parse. Thus, in our description of this parser

(and iii our simulation algorithnm), we will assunie that the input itself con-

tains a specification of onje suich correspondence, and the consetructed parser

will use that one.1

'Since the simulation algorithnn takes both grurnar and gTaph as input, the terms for
such a specification are reaudily at hand.

~%A
4-.04 .

4.1.

54 4 Thec Ah~orithihJ

Let ius assuinne. tlieii. t hat thli parscr for tile abovwe grauliniar st arts iii tile
follo~winlg c nifigitra~t-~Io o1) the above graph:

e..0

m

The S-rvroghuizer~s state contains an iuipat edge of the non-termninal A, so
the parser activates a recognizer for A and moves Into the following config-

uration:

The following points are worth noting:--

The parser has started the A-recognizer before it can determine an input-

edge correspondence for all of A's inputs. When node nj is read, and the
parser determines a correspondence for A's other inpnt, the new input

will be added to the recognizer'i (then-current) state. This process is
called staggered invocation.

*Only those pairs involving input edges of A have been deleted from S's
state. Thil "suhtractivity" is dual to the additivity of the reduction
process..

*Configuration,; which involve partial states. such aq this onie, will always

re'sult from situations in which the head image of a recognizer's state con-
tains some but not all of a non-terminal's input edges, hi these situations,
the parser will invok a sub-recognizer for the non-termiual involved even

-. A Only those pairs invovin inputedeof Ahvbedlt fm

.- -- . . , . , •- ,- -, - .. -.-.... ,-.-, . - . *.. -.. ..-. -. ,. .- , - ..- _• ..- • . -, . ,

.

SO.4

4.1 Noun.Determtini.stic Graph Parsers (5l t. 01

if the input elgv's corr-spondiing to tie non-termin.Ws iit.' are not in-

pit.s to a no;de inn Ilhc right fringe, of thc pairer's read livd position. For
exampIh. ini this configuration:

I5

a parsr would invoke a recognizer for B even though the node b is not
yet eligible for reading.

The parser is now ready to read a node; let us say it reads the I node. It
would move into the following configuration:

6A1
54

_.- ,

in which only the n node is readable, giving:

-O1

- -.-..-. " -

54 The Al-orit. ' N

The 1thIr input to tle previ(m.ily-invoked A-rec-ignizcr 4haL. arrilgor, sot Ow

p'rsur ahls it that reccgnizer's state:

I 0

A cart'4ul reader niay have' noticed that we have drawn a two-way arrow be-

tween the A-recognizer and the node it was called for. This is to remind us -

that the parser. in order to do this staggered invocation. inust keep track not

only of which node a recognizer was called for, but also any recognizer that

has already been called for a given node. That is. in addition to keeping 're-

turn pointers- with active recognizers. the parser must keep 'call pointers" -,

with non-terminal nodes that have sub-recognizers active for them.

The parser now read the m node, leading to the following configuration:

4.

m o

N-p

This situation is the converse of one encountered earlier: instead of one
(but not all) of the A-recognizer's inputs having bean reachei, one (but not
Sall' of its outputs have. The parser performs a staggered reduction similar

to the staggered invocation it perfornied earlier, and reaches the following

configuration:

-'I

"-1.1 Noi-Deterministic Graph Parsers 57
Lis

rn es

mn

k.'': The parser is now ready to read either the n- or the I-node. Let us say it
V:-, :chooses n, this leads to the following configuration:

L

g- ,-

5 rn

Finally, the parser reads the /-node and moves into this configuration:

e4~

i4-

d. 7

This configuration allows the completion of the staggered reduction started
earlier, so the parser terminates the A recognizer and adds to the state of

the S-recognizer:

w-.0

=,•. 4., *, -,. . 4- . S, .. ,-X .. • ,., ,.V... -.. ; --..- &.-- , . ••• . ; . U •. • .• .W' • •: •W' =. • •*

IV

n.01 0

n'.

e7

This is an accepting configuration.

4.2. The Parsing Algorithm

We are now ready to present our flow graph parsing algorithm. The algo-
rithm simulates the behavior of a non-di'terministic graph parser, exploring
simultaneously all the parser's reachable configurations. As with the string
algorithm of the last chapter. it will be useful to think of the algorithm as
simultaneously simulating a large number of graph parsers. each of which
eventually wakes different guesses as to the derivation tree of the input.

4.2.1. Preliminaries

We introduce here an item-based notation for the configurations of a graph
parser. We will simulate a given graph parser by constructing item lists,

.J similar to those of the last chapter, which show the parser's configuration
at each step of the input.

The basic unit of the notation is a representation of a state object called
a state item (or just item). Items are composed of three parts: a state of a
graph recognizer, a list of pending calls to other items, and a list of items
to return to. In addition, items will sometimes be annotated as dead, and
they will sometimes be marked with an1 R-flag. (We say more about these
annotation,; below.) As before. we represent the pointers iii call lists and
return sets with integers, and we subscript items with integers, yielding a
representation like this:

[(state), (call list). (return pointer)'id

V
Using this representation. we can represent the configuration of a graph

parser by showing its read head position in the input and items for the

S,• :_,

I ...::

-j ..S
4=• -- e ` - 2- `• • ••• . - y• • • •%"" ,',% % • ," ,"•'" . • - ,- , " , " , ", ",- , " , - .':

- . ~ . - - .- N

4.2 Thw Parsing Algurithmi 59 .1

state objict s of all its re(')gnizvirs. The correspnlI(ne part of each state

reprcv.esviialioi will Ie indicated by labiling t he target wiud ilput edges in-.
volwvd. Fur example. in tie first sanijch mui shown ablovc. the c(nfigulration('
obtaintd ju.st aft cr the invocait ion of t he A. anlid D-recognizers can be given "1

as follows:

Ilk C-, A I-)

¢'-

.4

131

(The subscripts used here are. of course. arbitrary.)

We say that the parser's active recognizers (or actIve i'tems) are those

whose states are non-empty. In the example above, only the A and B

recognizers are active: the S recognizer is said to be suspended.

When we wish to show the entire run of a graph parser on a given input, ~
we can compress the space used by showing. after each re-ad operation, only

those items are active or whichi made a state transition. For examnple, the
run of a graph parser on the gramimar and input graph showni above is shown
in figure 4.11.

While this depiction of a parse run looks a lot like the parse lists of

Earlev% algorithmn, there are s;omei import ant differences. First. not all active
itenis in a given list change .3tate when the next node is readl. Second. more
th;an one active item in a given list cait represent recognizers invoked by a

1 .

L.-- †t

60 4 The Algorithlni

4!A ?ur

4L A (C 2~)(0 3))'~ 0

-- •

Ai -tA 46- 1 PUZ iV

-r~k UP,.i b

i A -"""---" (24ý I• I

d' vae (6 '<]

Figure 4.11. Run of graph parewr done in first example.

owr.7

4.2 Tlhe Parning Al.gorithinu 61 @

hmgl(' parser- Ini Earley's alguritlill. ('icl m-tiv(itein T(Jrepresitedl the onlyi
recogilizcr c-urreuntly act ive for at least otiv parser. %A

4.2.2. Optimizations

As we did with &-irley's algorithm, we will coalesce the itemis representing
recogmizers for the bamce rule which were started at the same input position.
and are in the same state: one item will be used to represent the state object
of all such recognizers. In order to accomplish this, we will be using the
two opt inizationm-inatiple.ncall collapsing anOd duplicate-item merging-

that were introduced i, the last chapter.
Becaise the linkage mechanisms of graph parsers are more complex than

thod e of string parsers. we must b e more carefl in applying opthimizatione.

In particular. the priesence of staggered invocations and reductions, and the
fact that calling items can change state while their calleet are still active,
lead to cases that require a very good understanding of the intent of the
optimwizations. Thus, rather than proceed directly with the statement of our
parsing algorith,, we will first consider some examples of itcm behavior.

4.2.3. Examples

In this section we run the parsing algorithm on five different graonmiar/graph
pairs. Each sample rin exposes a different facet of the algorithm's behavior;
between them these examples cover al the cases that the algorithm handles
specially. Having once understood all five of these examples. readers should
have little difficulty understanding the complete statement of the algorithm
which follows them.

For each exaample, we show all of the item lists constructed by the al-
gorithm. Each such list is followed by a some explanation of how it was

?i constructed.
blh

peat H

h t it l,.

- -. .. - ' -]

0 2 4 T Ih ' A lg t •r it hiu iO

020

I LJ e

e.

S.... . SI

Exam'ple I. list 0.

-.

os,

4.2 Thev Pa&rsiu., Algorithjin (13

Example 1.

This~ (xanl~lvl (()llidvrs t liv effect of s t ate' clialg(ini thev cdllr whiilu a calliev
i. Mtill active. It jilt rI -e IIt'~lie r-..(P~it ()l)(ration1. ali ojwrat ion Iinvokedl at

N ~~CoItIIpltioii tulle Whid) SJplit -I a sijigi(' c~allinlg itelli jinto two.
Th T(Vimi. page ,. ..)w. -.4 al graiii...r. the inimt graph derivd by that

I ~~~gramiliar. anid the itenfll ist con)trlicted by the siiullatioll before anly nodes

have been read. No zion-terwniials hiave- 1)eeni predicted at this point, io only

One iteni is necessary.

:% At4.2 ~w ;JringAlgrit m 6 '1

-I "
,-@..'Example 1
.- l

Thi. c'~mlh' '¢m.ide., ile¢ffe'r. of.•th, d xng' iJ tt, €alhr w ih'a |'lic .'..1

o-.. 4

64 4 ThJtu Algorithmi

030

~13

rip.

tol4

.Exi l -- 1. list 1.

Ah~

.,, -.

4.2 The Parsiing Algorithm (35 @ O1

Here is the list after rea-din~g Iiodv if,. Item I wns arfciv' on thc niode: reeid;
that i-4. it' S tatc c(i-tailid 1) ilmtS Of ha0 niod,. Th' IiOd. WaS WLcCptaile]((as
1wr se•t'ion 4.1.4). am1 itli resulting transitiom has wed to a st.ate comtaitiing

*•(inmipmts to tlit, oii-trniiiiils B and A. (TTlc [s' rymbols arI)i•,il I ' edg, el .-

,Mid (2 if) itIelI I indicate that thefs edgep were present in that item's state
imeindiately after the inipit node wits scanne¢d. but wcr, then dle,],ted as a
rc,.sult of the sub-rmognizr call mechanism.)

Only one derivation (clCision is possible for the A-node. but two are

possible for the B-node. hituitively. item I represents the S-recognizer for
two parsers. Each has made a differvrnt derivation dcvision for B. but both
remain in the samoe srate and were started at the same xinput position. Thins.

we represvent both with a single item and use the call list for B in that item
to keep track of both outstanding calls.

41.4

I .

Q.

L N 4 -'•* ,
4

N 4 4 - .. . 4 . . - ,- . .

, _ . .- -% . . ' ' . - : ._- ,-.- -.: .-- - - - . -

(0 4 Tlu' Algorith 7i

t .- to

A.,,.as => eyc-:-.

L3.. -t. "b--

WK S) 11 4IiL

Example 1 lis 2..

DLj. n JI) ,

Ii~

V.,_

-. ...

4.2 The Parsing Algorithm 67 0

Now we read node a2. Item 4 was the moly one active (oil tihis Ilielo. so

it iiakes an appropriate transition. Its new slate iieessitates predicting
the twE, B-ziEdevs by invoking appropriate suh-reeo.-iizers: this happens in a

process exactly like that seen in thlie last li-t Ithens 5. 6. 7. and 8 are the S
result: notice that although the recognlizers for the upper and lower B-nodes
are being started oil the saine list. they are not started at the same input
position for the purposes of niultiple-call collapsing.-"

Items 2 and 3 are on this list because. while they were not active on
the node read. they are active on a node eligible to be read. This copying-

forward of active items insures that. each time a node is read. all the items
active on that node will be present on the previous list. Thus. we never have
to search back through prior lists for active items.

Po

Will

'-.4. *-.'

i,-0

. 4-.. ..-

68 4 Tic Algurithm 0

•6) 7 8))q

eq

LA A --2 f, -z--" z:7.').

S• 11 "1
.-,-

134 b-" 3- is-:,.;
U I ~ ~..tAK1,Uq

- (..

-- e-

3

E a p e .

.s

I

• • E ampl I.lit -"
.4..

°-

S.O
:

"S.,":-

,119= • • .

.4... - . • . . . • •• • • • `•: `- `.• `" ` `:•'•: .. '` '-'

,.5 - "-.••--'- t':%'•r -:• ''' '-'; ' I • -

'.1

4.2 Tlu, Parsing AkgOrithnm 69

Now the. fint bcgi 1s. We read no•vli' 1), 11(] it•iii 5 wiv:V(, nto an a c a p'(',t inlg-
state. W('-,II ' 10w ('rolplphte 11n1(Bt of itunm 4 by hettling it(ij 5 returir.

BDt rcall that item 4 rcprv.vnt.w two rc('ogiiZcrs: Oi(C which pr(edicted B.

via itt'in 5 ahill an 11' which pr(.,li('tt&d B1 via ite.m 6. If w m.ake IIk le $tlt(' 3,•
transition in it('m 4 cilh'ld for by the ret urn of item 5. we will have made a

"spurions state tranlsition in the recognizer which callhd item (6.

The sohition is to c-.spht item 4 into item 9. This procss separates into

two item.s the reprsentation of the two reLcognizers where were merged inI
item 4. It works by:

1. Copying item 4 to the new itcm 9. (This gives us two items each of which
represent both of the recognizers niergc(, in item 4.)

2. Removing the call to item 5 from item 9. removing the call to item 6
from item 4. and removing .the return to item 4 by item 6. (This makes
each of iten 4 and item 9 represent only one of the two recognizers that

were merged in item 4.) .

3. Going through all the callees of item 9 and informing themi about their

new caller. (This keeps the call lihst of item 9 and the return sets of its
callees consistent.) 1'

4. Going through all the callers of item 9 and informing them of their new
callee. (This keeps the return set of item 9 and the call lists of its callers
consistent.)

The effects of the c-split operation can be seen in items 1. 4. 6, 7, 8, and 9
of the current list; once the c-split is complete, item 5 returns to item 4 as
described in section 4.1.5.

Note that items 2 and 3. which have been brought forward to this list I
because they are active, are unaffected by the c-split. In general, none of
the 'siblings' of a c-split item are affected by that split: only its 'parents'
(callers) and -children' (callees) are affected.

',I.

....

., ,• .• ,. •, ,• ,- . . -. - - -,. . -. , - .- . ..

/01 bL\ X-
'p...

""64

- if 10 it

•-~ .;. _]/.-.

6 2 AItj1

-',Example 1, list 4.

%..,

., .. - ,Pp,, , -

4.2 Thc Tharsini- C.-Orithin~ 710

Pe.a1iig tli(i(' b4 Imt-i item 7 aii sU we)il t~itv. This~ -*-si~l', item1 4

jinto it('ii 10) andI(it iii 9 into it cii 11 for the saijmv rcilsos i itiii~C

spijt jtc'iii 4 ini tlic last list. onily this~ tinici it is the D2 nidle that hias other
(Icriv;Ltio~inr pendin~ig.

*

72 4 Thy Aigorithmn

C_

Ie,6

((A L-tLsU--.--1,.+½5- ,2 (iz, 0 •, ,• •- :•:

-r 11'6 IiZ31".C

LA • - NC,. ((' , •I)(i 0',3] ..

[II:.

E xniuple 1, list 5..: .

a e.

".06S

Exu,- 1 et5

4.2 The Par.sizg A4lgurithiu 73 ,.

N W (We" l n¢; d e b1lqi .•J](It ll. 2 an.ld 3 ("h~lalg(, stat(,. a'ini i Jter 2"s return .-.
5' -split s il.C'm I jitto itcIm 1.2. Item.s 4, 9. 10}. aIdI(I 1 re, ;tfl',(t¢, hyl1 thli,• .Plit. ...

S.-.-.

'5'

", -

.5,P

., -0
,...I:::

:'5)•/

,.•" ~-0 i

-. -

"... S

74 4 Thv Algorithtu m

6%-: .%=9- -A

92- 2U5

.---

4-7

L6 6

-1ýA a:.l Lot - .

S..- o - _

4.2 Thv A P,-Iig Algorithm 75

WX e r ('ld h3' a ;.', the slak(l, t ,f 4 ptrim . parsc 's l 'gin• . It(1 .- 4 ai l i() 1'
ar(a(tiv(e (oi Othil d,, read kit it is not ac(e('p)taibe. so their rte 'ogijizvr. re- -

je-t. We iu -ilate this by marking t h ye , it ,msi a' dcad. a ,t whih w tas not

1(,C(,ss' ry iii the striiig ('a.c. T]h .p oin t c(.r is tha t. altlh ,igh th , re 'Og iz- r"o'.6

ers represented by these items have rvij(('ted. t'hey inay have p)u'ding 'alls

to other recognizers. If tlhse ot)her rec(oguizers were alhowvced to returu to

their (dead callers. these rt urns iuight cause sta; transitions which lead to
spurious parst's. By marking the itemis for reject'iug r(,c(tgniz(vr with dead.
we will know to suppress future returns to those items.

Reading b3 also puts item 6 into an accep)ting state. but its return to
it ems 9 and 11 does not cause theim to c-I)lit befa1,, thely have no other
rncogiuizurs pending for the BD nolde that iteiii G completed.

Items 1. 3. and 8 are copied unchanged from the previous list bcause
they are active. Note that item 8. although it contains item 10 in its , -t,,rr r"*
list. is wnchanged by the fact that item 10 has died. If item 8 were e. - , t.
move into an accepting state, its return to item 10 would -imply be ignored.

6'-.

.i

b.,

°i°,[-r .'-.'6

Ao,

i!l 70 4 Th,' X:-.niriiui j.•

.v 2-Q/ '• - (e 7,"

Cl,"" 3.---'" •-,-E /

L O PA

LI (ý -3 ('1 10 1)

Ext"ple 1, lit 7.

.'.- S
"-""S '

"" A c:•• •z '.-
0'-2," %'

4.2 The Parsimg Algo(rithmj 77"

Wc read inode c1 . Dcm.4~ anid 11 div. hevii 9 ilov($ 1vto ;III iicc(ptiiig
-wl . isin.ig iteuiii I an 2t -split iuiio itcnisi I' alitl 14. This sýplit

stal~~° v.anI12t

tak hs place Aelv though nmon of the Ociiding calls for tlI .4-node(1

by RUMt 9 are to live j 'items the decision whetiher or not to cui p1it is madp
solely Onl the basis of nvte.bor of jcnding calls. Oin the other hand. hcauisc bv

items 4. 10. anild 11 are dead. tihe 11)dlat ijg of tl hir retturn !;,,t.s normally done

by the c-splits of itemis I anid 12 ar' suppressed.

I.-

'I...

S...lO

.1.o

* -,0

78 4 The A.lgoriltljhj

CIO-

Exanple 1, fist 8.

NJ

- - - - - - - ---
-. ,

4.2 Tlh, Parsing Algorithm 79
•., W~~~~~~vr(, I)(, .. Item, L. Whic'h i.4 it t'•)-h'wc~l 1till,).)mov(,s in)to) III it- ""

.i('pr .iig ss trie, t heft ithla t I asmll ()f ita trailoig I'(I ges: th(, l1ipliit is accv'jtd.

S.
F.o

,,4

,-0

4. -

;,-,? -.

, .,V.
- ..

80 14 Thc Algorithmi -

[s -

1Q,

Exampijle 2, bst 0.

_b vb. - .

-

5i-o

"'"' I l°'A

4.2 The Parsing Algorithm 81

Example 2

This ('XiLmI[pI ('xph)rs thI' interac'tionI of imltiph,-call collapsin g and st;ig- -a

g're(d invocation. It iitroduces tfhl p-,•..iht operation. ini which ;ui itcm is

split into two items ;%s the result Of A prediction operation.
We start off with just two items, one for (,ach derivation of S.

o-. "-

• o.

- 'ai "N"

'::: : , i--

Uo

a.

-aL -6.,

.," , "

:01:':

I

82 4 The Alg.-rithm'

-'• -- b/ .AO

A~

-- -,•- • A - • ((A 3 1-+

a.2

- b1

-' s ..m - o. A - ((5' / • '• , j]..i

A 1"rc--"nZ

4-,

. _|

-U4

Examnple 2. list I.

41

I.;IO
'

4:;:::;

4.2 Thl Parsing Algorithm 83 s

"" 1)111 reatding, ndle (i1- h,1h S-rvcc-glizers na;Lk(, I ralstion. it() it stat,
"co"itaiminilg an inliput (f A. Since the two remcogiazers agrec, iLs to which input
edge is input to which port of .4. iltipf'-call collapsing takcs pla c nan, th,

SA-re,'g~irs invoked will eivth return to both S-recogiizers.

• 4
,,; N..

N.i

'I,". •

" •,"•0

S-. .- ',,

S-0

S-'

--.- .. -+,: - .. .-. . . - - . . + . - .*..

•+, .I Th<c A]'-,firith m 5.0

84
..

S'

A0

81Til
- -

~~ CI

,.A ' :->-".%I)

'3:

I~.~ -OK'QjIA- ((A 3'~ '

-E ",+ 1 i• | i :•-+•ii+ :i+i • I : i I II+•'% .. . i i I I

IFI

4.2 'Thc Parsiing Algorithui 8:

WVe readI~f(I 1(' b3. aud(both A-re(l(-gziii?.rs ma aJppr(priatc(tnruisi t i(ns
'Iht, itemsi for the S-recognizv~rs are act ive andunic~hauiged.

i mlo

VA

86 4 Tlh, Algorithm 0'.-0

UA 3

rr

r5. o
Example ,2, Ho3

"" -'--'•c~ ~..-- / ..-. :'-.

5• _•1o -- ((A '+)~ •:o

k V 0

Exam le ,"lit.3

:-.-i

V ,,2
VV-A• •'- • '.
".'I.•• l•

I,'.

.1.2 The Parsing Algoritlhm 87

Wheni wi. re(ad nhode I. the S.recc gniizer of itu,(.m 1 Toovnes mh) a state

co.ntaining the ot her inpu)t of A. This reco-gnizcr niust pass this new input
(lh)wII to hi, .4-recogiiizers of it i-is 3 aln 4. btit tflisV item.- also ripresenzt

r('ecognizirs inhvoked lby item 2. which d(oc, mnt want to Ji);..,S dowi, this Sechond

input.

This situatioin is :ouiI)le'invletary to that in which we" '-si)hlit a caller.

and the solution is also complementary: we, p-split the callev. By this we
nIeal we split the representations of the two recognizers merged in item 3

among two items. and we do the same with item 4. Each of these p-splits is -=
accomplished similarly, for item 3 we do it by:

1. Copying item 3 to item 5. (This gives us two items. each representing a
recognizer invoked by two parsers.)

2. Remnoving item 3Ts return to item 2, item 5's return to item 1. and item 2's
call of item 3. (This makes each of the items represent a recognizer t:_

invoked by just one of the two parsers.)

In the general case. items 3 and 4 might have had outstanding calls, in
which case we would have made their callees return to both them and their
p-splits. -0

The result of the p-split is that we can now pass down the new input
from item 1 to items 3 and 4 without hurting the recognizers invoked by

item 2. Thus, we are ready to read the next node.

0

. S

I....

6 •o

-m,•-%-'s •" % -r%3% --* - .,;5-- 5 ,r •.s r t..o.S.S..,_. , .•• .. ,- , . - ,% .' - .-*.' r rr .rr ,r .. \ r, U,•, r,o r, r.

84

Tannenbaum, Robert and Warren H. Schmidt. "How to Choose

a Leadership Pattern." Harvard Business Review

(May/June 1973): 162-180.

Vroom, Victor. "Can Leaders Learn to Lead?" Organ-

izational Dynamics 3-4 (Winter 1976): 17-28.

44

If

?h

*•o

